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An investigation of dissipative forces for Lagrangian computational fluid dynamics is conducted from
Hamiltonian considerations including energy dissipation for macroscopic systems. It is shown that discrete
forces must fulfill particular rules to be in agreement with the fundamentals of Physics. Those rules are
specified in the case of the smoothed particle hydrodynamics �SPH� numerical approach, leading to a clear
treatment of friction forces in connection with energy dissipation. In particular, it is proved that the kernel
function, which is at the heart of interpolation in SPH, must satisfy some constraints in order to be consistent
with the dissipative properties of a real fluid. A numerical example is given to illustrate the abovementioned
considerations.
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I. INTRODUCTION

Lagrangian methods in computational fluid dynamics
�CFD� are used more and more in the fields of confined and
free-surface flows. All these methods, such as smoothed par-
ticle hydrodynamics �SPH� �1�, dissipative particle dynamics
�DPD� �2�, or moving particle semi-implicit method �MPS�
�3� are based on the idea that a flow can be seen as a collec-
tion a macroscopic particles exchanging momentum, energy,
etc. In this context, the question of the discrete form of
forces is crucial, and can be investigated from Lagrangian
and Hamiltonian viewpoints. A key element is how to treat
macroscopic systems such as fluid particles, for which the
laws of thermodynamics predict a behavior, which is differ-
ent than the behavior of individual molecules, leading to the
concept of energy dissipation. Hence, the correct treatment
of dissipative forces in Lagrangian methods, in connection to
the principles of Hamiltonian and statistical mechanics,
yields some rules that developers must obey when writing
the discrete equations of a Lagrangian numerical method
consistently with variational ideas.

In Sec. II, we will briefly review the backgrounds of the
Hamiltonian theory, before focusing on dissipative �or fric-
tion� forces, first in a general context, and then applied to a
system of macroscopic particles. We will show that, regard-
less of the considered numerical approach, the discrete par-
ticle friction forces should fulfill some requirements deduced
from the conservation laws, but also from considerations of
volume shrinkage in the phase space. In Sec. III, we will
apply these considerations to find the constraints that the
dissipative forces must satisfy in the context of the SPH
method. This work will be based on a rigorous treatment of
discrete viscous forces in the context of this method. The
simulation of a steady flow in a periodic hill channel will
illustrate our conclusions in Sec. III C.

II. CONSERVATIVE AND DISSIPATIVE SYSTEMS

A. General considerations on mechanical forces

In the present section, we remind a few statements regard-
ing Lagrangian and Hamiltonian mechanics for dissipative
systems. Since the pioneering work from Lagrange �4�, it is
generally considered that a classical mechanical system may
be fully described by a Lagrangian L, playing the role of a
state function depending on its N generalized coordinates qi
and their time derivative, or generalized velocities q̇i,

L = L��qi�,�q̇i�,t� = EK��qi�,�q̇i�� − U��qi�,t� , �1�

where EK and U are the kinetic and potential energies, re-
spectively �here and in the following, we use the notation
�qi� to denote the collection of all qi’s�. Then, the Lagrange
equations give the behavior of the system �qi� as

∀i, ṗi �
dpi

dt
=

�L

�qi
= −

�U

�qi
= Fi

cons, �2�

where the generalized momenta are defined by

pi �
�L

� q̇i

=
�EK

� q̇i

. �3�

Equation �2� also appears the notion of conservative
forces Fi

cons. The name and notation suggest that they con-
serve energy, as it is well known, since they can be written as
the derivatives of some state function �potential energy� with
respect to the coordinates qi, i.e., as spatial gradients of a
potential. The above equations are perfectly valid, for ex-
ample, for a gas of interacting �colliding� molecules, and the
total energy is indeed conserved at the microscopic scale.
However, the behavior of such a system involving a very
large number of degrees of freedom is better understood
through a statistical viewpoint. This can be achieved through
the Boltzmann equation, leading to the H theorem, which
states that entropy �disorder� increases with time while col-
lisions between molecules spread their velocities on a
broader range �5�. This process transfers energy from the
macroscopic to the microscopic �thermal� scale and thus*damien.violeau@edf.fr
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yields energy dissipation at macroscopic scales. It also tends
to make the macroscopic �Boltzmann averaged� velocities
more and more uniform as time goes on. At the macroscopic
scale viewpoint, where the velocities are smooth, one must
then admit that some forces Fi

diss exist, which can be quali-
fied as dissipative, for they no longer conserve the macro-
scopic energy. As a consequence, those “friction” forces can-
not be written as spatial gradients of any potential, but must
depend on the macroscopic velocities �q̇j�. A Taylor expan-
sion up to order 1 gives

Fi
diss = − �

j

�ij��qk��q̇j , �4�

where the �ij’s are N�N unknown friction �or “kinetic”�
coefficients depending on the �qk� coordinates only. Next,
Onsager’s principle �6� states that these coefficients satisfy
the following symmetry condition:

� ji = �ij . �5�

This statement allows us to rewrite Eq. �4� in the following
form

Fi
diss = −

�F

� q̇i

, �6�

where we have defined the following quadratic form:

F =
1

2�
i,j

�ij��qk��q̇iq̇j . �7�

The Lagrange momentum �Eq. �2�� can now be reformulated,
for macroscopic systems, as

∀i, ṗi = −
�U

�qi
−

�F

� q̇i

= Fi
cons + Fi

diss. �8�

The system is totally defined at each time by the set of
variables ��qi� , �q̇i��. However, Eq. �3� shows that the choice
��pi� , �qi�� is also possible; the energy �or Hamiltonian� H is
then defined by

H��pi�,�qi�,t� = �
i

piq̇i − L . �9�

From considerations related to Galileo’s relativity prin-
ciple, it is also known �7� that the kinetic energy is a qua-
dratic function of velocities, with coefficients depending on
the generalized coordinates as

EK =
1

2�
i,j

�ij��qk��q̇iq̇j . �10�

The positivity of EK shows that the ��ij� are N�N coef-
ficients of a positive definite quadratic form, and by defini-
tion they are symmetric; thus the matrix � of coefficients
��ij� has an inverse, hereafter denoted by �=�−1. From Eqs.
�3� and �10�, we then obtain linear relations between the
generalized momenta and velocities as

pi = �
j

�ij��qk��q̇j . �11�

Combining Eqs. �9� and �11� now gives the Hamiltonian
as the sum or kinetic and potential energy, the former being
a quadratic function of generalized momenta,

H��pi�,�qi�,t� = EK��qi�,�q̇i�� + U��qi�,t�

=
1

2�
i,j

�ij��qk��pipj + U��qi�,t� , �12�

where the ��ij� are the coefficients of the matrix �. Using
Eqs. �3� and �8�, the differential of H can be written as

dH = �
i

�q̇idpi + pidq̇i� −
�L

�t
dt − �

i
� �L

�qi
dqi +

�L

� q̇i

dq̇i	
= −

�L

�t
dt + �

i

q̇idpi − �ṗi +

�F

� q̇i
	dqi� , �13�

from which the set of Hamiltonian �macroscopic� dissipative
equations immediately follows:

�H

�t
= −

�L

�t
,

�H

�pi
= q̇i,

�H

�qi
= − ṗi −

�F

� q̇i

. �14�

From Eq. �13� the time behavior of energy also follows:

dH

dt
= −

�L

�t
− �

i

�F

� q̇i

q̇i. �15�

When the system is isolated from any external influence,
the Lagrangian is independent of time ��L /�t=0�. Moreover,
the quadratic form �Eq. �7�� of the function F finally yields
the following relation:

dH

dt
= − 2F . �16�

For this reason, F is usually called the dissipation func-
tion. The fact that the macroscopic energy decreases with
time immediately implies the positiveness of F, meaning that
the quadratic form defined by the ��ij� is positive definite.
The dissipation of energy has an important geometrical con-

sequence. Let us consider a small ensemble �̃ of initial con-
ditions ��pi� , �qi�� for the system in the phase space, and let

us call Ṽ the volume of this ensemble. Let us look at the
evolution of the system along time for all these possible
initial values. In the phase space, the subsequent values of
��pi� , �qi�� will draw an ensemble of curves following the
“velocity field” ��ṗi� , �q̇i�� according to the set of Eq. �14�.
We can now affect to each point ��pi� , �qi�� a probability �,
considered as a “density” in the phase space. The conserva-
tion of total probability �which equals unity� is then formally
equivalent to the conservation of mass of a virtual fluid in the

D. VIOLEAU PHYSICAL REVIEW E 80, 036705 �2009�

036705-2



phase space �6�. With volume Ṽ, density �, positions
��pi� , �qi�� and velocities ��ṗi� , �q̇i��, and using Eqs. �4� and
�14�, the continuity equation reads

−
1

�

d�

dt
= �

i
� � ṗi

�pi
+

� q̇i

�qi
	

= �
i
�−

�2H

�pi � qi
−

�2F

�pi � q̇i

+
�2H

�qi � pi
	

= − �
i,j

��ijq̇j

�pi
. �17�

We mentioned earlier that the �ij’s are functions of the qi’s
only. Thus, with Eqs. �14� and �12�, we obtain

1

Ṽ

dṼ

dt
= − �

i,j
�ij

�2H

�pi � pj
= − �

i,j
�ij�ij = − tr���� , �18�

where � is the N�N matrix of coefficients �ij. Eq. �18�
gives the time evolution of the volume Ṽ of �̃ in the phase
space. Now, reminding that the trace of the product of two
positive definite matrices is positive, one comes to the con-

clusion that the volume Ṽ in the �macroscopic� phase space
decreases under the effect of dissipative forces. In the ab-
sence of dissipative forces, Eq. �18� turns back to Liouville’s
theorem, stating that the volumes are preserved in the �mi-
croscopic� phase space. On the other hand, at the macro-
scopic scale, the larger the friction forces, the more the vol-
umes decrease in the phase space �volume shrinkage�. This
means that the paths ��pi� , �qi�� of the mechanical system get
closer and closer, tending to an attractor, which is a known
feature of dissipative systems. This deserves an interpreta-
tion: while disorder increases at the microscopic scale, the
resulting friction at large scales, making the macroscopic ve-
locities more and more homogeneous, increases macroscopic
order, so that the qualitative behavior of the system in the
phase space depends on the scale at which we investigate it.
In other terms, the measure of the volume in the phase space
depends on the spatial scale of observation, as it is for a
fractal object.

It is also known that the total linear and angular momenta
of a closed system are both conserved, with or without dis-
sipative forces. These conservation laws, according to Noet-
her’s theorem, are directly connected to the Hamiltonian
form of the equations of motion �4�.

B. Systems of particles

Extending the above considerations to the case of a sys-
tem of Np macroscopic particles labeled by the letters a, b,
etc. is straightforward, the number of degrees of freedom
being now N=nNp, where n is the dimension of the physical
space �generally equal to 2 or 3�. Knowing the particle
masses �ma�, their respective positions �ra� and velocities
�ua= ṙa� �now playing the role of the �qi� and �q̇i�, respec-
tively� and internal energies �Eint,a�, the Lagrangian �Eq. �1��
reads

L = �
a

1

2
maua

2 − �
a

Eint,a − Uext��ra�� , �19�

where ua is the norm of ua, the kinetic and potential energies
being defined by

EK = �
a

1

2
maua

2 =
1

2�
a,b

ua
T�abub,

U = �
a

Eint,a + Uext��ra�� . �20�

Note that the kinetic energy is indeed in the form �Eq.
�10�� with a N�N matrix � which coefficients are given by

�ij = ma�kl�ab,

i = n�a − 1� + k ,

j = n�b − 1� + l , �21�

where k and l here denote spatial directions �from 1 to n�, so
that i and j go from 1 to N=nNp, as required. As pointed out
by Eq. �20�, we may also write the kinetic energy using Np

2

matrices of dimension n�n attached to each pair of particles
and denoted by �ab,

�ab = ma�ab, �22�

with �ab being a Kronecker matrix of dimension n�n, i.e.,
�ab=In �the n�n identity matrix� if a=b, otherwise �ab
=0n �the n�n null matrix�. One must insist on the fact that
in Eq. �22�, the labels a and b do not represent matrix sub-
scripts but particle labels. Note that here, the coefficients
�ij’s do not depend on �qk� �in other words, the matrices �ab
are independent on the particle positions �rc��. The equations
of motion without friction forces �Eq. �2�� may be written in
a vector form for each particle as

∀a,
dpa

dt
=

�L

�ra
= −

�Eint,a

�ra
−

�Uext

�ra
= Fa

int + Fa
ext, �23�

where the momenta are defined, according to Eqs. �3� and
�19�, by

pa =
�L

�ua
= maua. �24�

The conservative force is, thus, now made of two parts,
namely, internal and external forces,

Fa
cons = Fa

int + Fa
ext. �25�

For a system of particles representing a fluid, the internal
forces Fa

int correspond to pressure forces, as we will see later
�Sec. III A�, while the external force Fa

ext is generally re-
stricted to gravity,

Uext��ra�� = − �
a

mag · ra = �
a

magza, �26�

where g is the gravity acceleration �with norm g� and �za� the
particle elevations above an arbitrary reference level. The
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above two forces are conservative �Fa
int+Fa

ext=Fa
cons�, since

they are written in a gradient form. On the other hand, par-
ticle dissipative forces may now be taken into account, gen-
eralizing the Taylor expansion �Eq. �4�� and the definition
Eq. �6� to write

Fa
diss = − �

b

�ab��rc��uab, �27�

where

uab = ua − ub = − uba, �28�

and �ab’s are Np
2 matrices of order n attached to each pair of

particles �like with the matrices �ab defined above, a and b
do not represent matrix indices put particle labels�, depend-
ing on the collection of particle positions �rc� and satisfying

�ba = �ab �29�

according to Onsager’s principle �Eq. �5�� regarding kinetic
coefficients. The main difference with Eq. �4� is that now the
dissipative forces depend on the velocity differences. The
reason is that a set of particles moving with a uniform ve-
locity does not experience any friction �in a continuous me-
dia viewpoint, the latter proposition states that shear forces
depend on velocity gradients, see Sec. III B�. The friction
force �Eq. �27�� can be separated into individual forces due
to each particle b, namely, Fb→a

diss =−�ab��rc��uab. Since such a
force can only involve the positions of the particles a and b,
only ra and rb must appear in �ab among the list �rc�. Be-
sides, the friction force vanishes when a=b, so that �ab must
be a function of rab, defined by

rab = ra − rb = − rba. �30�

Lastly, for isotropy reasons the shear forces Fb→a
diss do not

depend on the orientation rab. Hence, we must have

�ab = �ab�rab� �31�

where rab= �rab�, which is consistent with Eq. �29�. The latter
symmetry, as in Eq. �6�, allows to write the friction force
experienced by particle a as

Fa
diss = −

�F

�ua
, �32�

where

F =
1

2�
a,b

uab
T �abuab �33�

�we will sometimes drop the explicit dependency of �ab in
rab, for simplicity�. With these premises, the dissipative par-
ticle momentum equation appears in a form analogous to Eq.
�8�:

∀a,
dpa

dt
=

�Eint,a

�ra
−

�F

�ua
−

�Uext

�ra
= Fa

int + Fa
diss + Fa

ext.

�34�

The conservation of the total linear momentum of a
closed ensemble of interacting particles directly stems from
the fact that the sum of all forces is equal to zero. In particu-

lar, from Eqs. �28� and �29� it immediately follows that the
action-reaction law is fulfilled by particle friction forces:

Fb→a
diss = − �abuab = − Fa→b

diss . �35�

Similarly to Eq. �3�, and using Eqs. �19�, �20�, and �22�, one
defines the particles momentum vectors by

pa =
�L

�ua
= �

b

�abub = mua. �36�

The Hamiltonian now becomes

H�ra,pa� =
1

2�
a,b

pa
T�abpb + �

a

Eint,a + U��ra�� , �37�

where the �ab’s are Np
2 matrices of order n defined by

�ab = �ab
−1 =

1

ma
�ab, �38�

Equation �37� is the macroscopic-particle analogue of Eq.
�12�. The law of energy dissipation �Eq. �15��, for a closed
set of particles, now reads

dH

dt
= − �

a

�F

�ua
· ua. �39�

However, rearranging Eq. �39� to give energy losses as a
function of F now gives a slightly different result in com-
parison to Eq. �16�. Indeed, using Eq. �27� and swapping the
dummy labels a and b, we get

dH

dt
= − �

a,b
��abuab� · ua = �

a,b
��abuab� · ub �40�

�we used the symmetry laws Eqs. �28� and �29��. Then, tak-
ing the average of the former two expressions, one comes to

dH

dt
= −

1

2�
a,b

uab
T �abuab = − F . �41�

Comparing the last relation to Eq. �16�, we see that the
dissipation rate is now assumed by F �instead of 2F�; this is
due to the fact that the friction forces are linear functions of
the velocity differences, as mentioned above. The energy de-
crease then requires each matrix �ab to be positive definite.
Obviously, the energy lost by the “coarse-grained” velocities
ua is converted into heat �molecular motion�, so that the total
energy is still preserved at the molecular scale.

We will now investigate the appropriate form for the ma-
trices �ab. We already mentioned that shear forces satisfy the
conservation of linear momentum �Eq. �35��. This is a direct
consequence of the fact that these forces take their origin in
additive microscopic phenomena, which obey this conserva-
tion law. Similarly, the angular momentum having the same
additive property at the microscopic scale, one must imme-
diately deduce that shear forces should fulfill the condition of
total-angular momentum conservation, which is achieved by
imposing that the angular momenta of individual shear
forces are antisymmetric with respect to particle labels,
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ra � ��abuab� = − rb � ��bauba� �42�

or, using the symmetry properties,

rab � ��abuab� = 0 . �43�

The condition �Eq. �43�� is fulfilled only if the vector
�abuab is collinear to rab; thus, there must exist a scalar
quantity �ab symmetric with respect to a and b, such that
�abuab=�abrab. Besides, the latter relation shows that �ab
must be linearly depending on uab, hence of the form �ab
=�ab ·uab, where �ab is an antisymmetric vector. This gives

�ab = rab � �ab,

�ba = − �ab, �44�

where the tensorial product of two tensors of A and B of
respective orders of p and q is the tensor of order p+q with
components Ai1...ip

�Bj1...jq
. The above condition is not suffi-

cient to properly model shear forces in a particle formalism.
In addition to the conservation of total-angular momentum,
these forces should vanish for a set of particles moving ac-
cording to a rigid body rotation, i.e., for a velocity distribu-
tion defined by ua=u+ra�� where u and � are arbitrary
constant vectors, i.e., uab=rab��. Coming back to the gen-
eral form �Eq. �27��, the latter condition is satisfied if

∀�, �
b

�ab�rab � �� = 0 . �45�

By similar arguments, it can easily be proved that this
requires the existence of vectors �ab� =−�ba� such that

�ab = �ab� � rab. �46�

Conditions �Eqs. �44� and �46�� are simultaneously ful-
filled if and only if there exist symmetric scalar coefficients
	ab so that �ab=	abrab=�ab� . Finally, the matrices �ab can be
written as

�ab = 	abrab � rab,

	ba = 	ab. �47�

With this formula, the particle friction forces �Eq. �27��
take the form

Fa
diss = − �

b

	ab�rab��uab · rab�rab �48�

�we remind that the �ab’s, and thus the 	ab’s, are functions of
the particle distance rab�. The dissipation function �Eq. �33��
now reads

F =
1

2�
a,b

	ab�rab��uab · rab�2. �49�

As required, both the shear forces �Eq. �48�� and the en-
ergy dissipation �Eq. �49�� vanish for a rigid body motion
�uab ·rab=0�. One could be surprised that the friction force
exerted on a by b takes the form Fb→a

diss =	ab�uab ·rab�rab, thus
is collinear to rab, contrary to what the theory of continuous
viscous fluids suggests, i.e., a shear force collinear with uab
�see Sec. III B�. The latter case would involve matrices �ab

proportional to the identity In, but would violate the conser-
vation of total angular momentum and the nondissipative
character of rigid motions.

In order to ensure the definite positiveness of the �ab’s,
the 	ab’s must be positive non zero quantities. It is appar-
ently surprising to find that, for b=a, raa is simply the null
vector 0, thus the �aa’s seem to be null matrices, contrary to
the what latter condition states. However, one should remem-
ber that the 	ab’s are functions of the distances rab. From Eq.
�47�, it appears that the non-nullity of the matrices �aa’s can
be obtained provided 	abrab � rab tends to a nonzero constant
while rab tends to zero, i.e., if 	ab varies according to rab

−2

when rab tends to zero. Thus, there must exist a function
gab�rab� so that

	ab =
gab�rab�

rab
2 ,

gab�rab� →
rab→0

ga 
 0, �50�

where ga’s are positive quantities, constant with respect to
the particle distance �however, ga can depend on local ther-
modynamical properties of the particle a, like its tempera-
ture�. Formulae �48� and �49� now read

Fa
diss = − �

b

gab�rab��uab · eab�eab,

F =
1

2 �
a,b�a

gab�rab�
rab

�uab · eab�2, �51�

where we have used unit vectors

eab =
rab

rab
= − eba. �52�

To finish this section, let us examine how the particle
friction forces influence the volume in the macroscopic
phase space. According to Eqs. �18� and �38�, one can write

1

Ṽ

dṼ

dt
= − �

a,b
tr��ab�ab� = − �

a

tr �aa

ma
, �53�

where the matrices are of order n �i.e., the space dimension�,
contrary to Eq. �18� where those were of order N �i.e., the
number of mechanical parameters�. With Eq. �53�, it appears
even more clearly than with Eq. �18� that the dissipative
property of friction forces �or the positiveness of all the ma-
trices �ab� is responsible for a decrease of volumes in the
phase space. If the matrices �aa were null, the decrease of
volumes in the macroscopic phase space would not be ful-
filled by the model. With Eq. �50�, we finally get

1

Ṽ

dṼ

dt
= − �

a

1

ma
lim
b→a

�	ab�rab�rab
2 � = − �

a

ga

ma
� 0 �54�

�keeping in mind the positiveness of masses�.
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III. APPLICATION TO THE SPH NUMERICAL METHOD

A. Brief overview of the SPH background

At the limit where the size of the particles tends to zero
while their number tends to infinity, the above equations lead
to the Lagrangian theory of continuous fluids �8�. However, a
Lagrangian computational approach can be directly con-
structed from the discrete viewpoint developed in the previ-
ous section. We will now investigate how the above prin-
ciples can serve to write the discrete equations of the SPH
numerical method in relevant forms. SPH is today widely
used in CFD �see Ref. �1� for a detailed review�. It is not
within the scope of this paper to repeat or summarize the
numerous works already made on the accuracy of SPH inter-
polants and operators; we will first give a brief overview of
these principles. SPH is based on the idea that a flow may be
modeled using a collection of macroscopic particles �a� fol-
lowing the ideas and notations of Sec. II. However, writing
the equations of motion of a fluid requires further assump-
tions. Discrete approximations of continuous differential op-
erators are performed through the following process. For any
scalar field A, the ensemble of its values at the points occu-
pied by the particles is denoted by �Aa�. First, � being the
fluid domain, Aa is approximated by

Aa = A�ra� = 

�

A�r���r − ra�dnr

� 

�

A�r�wh�r − ra�dnr

� �
b

VbA�rb�wh�rab� . �55�

The first line of Eq. �55� is exact. The Dirac distribution �
is then approximated by a kernel regular function wh, and the
integral is approximated by a discrete �Riemann� summation
over the particles b, where �Va� are the volumes of the par-
ticles. The kernel is generally compactly supported, so that
the discrete sum involves a limited number of neighbor par-
ticles. Besides, it is proved �9� that the approximation �Eq.
�55�� is better if wh only depends on the particle distance,
i.e., wh�r�=wh�r�. We, thus, introduce a positive dimension-
less kernel f such that

wh�r� =
�w,n

hn f�q� , �56�

where q=r /h, h being the so-called smoothing length and
�w,n a dimensionless constant depending on the choice of the
kernel and the space dimension n �usually equal to 2 or 3�.
Note that we restrict here are considerations to a constant
smoothing length. The kernel is also usually required to be
normalized, i.e., to satisfy



�

wh�r�dnr = 1. �57�

Under this assumption, considerations of spatial symme-
try easily show that all momenta of odd orders of ẇh vanish,
i.e., for all integers m:

2m+1

�
�

ẇh�r�r � r � . . . � rdnr = 0

�58�

�in our notations, for any set of m vectors A ,B , . . . ,Z, the
quantity A � B � . . . � Z is a tensor of order m whose com-
ponents are Ai1

Bi2
. . .Zim

�. The constant �w,n is chosen such
that the normalizing condition �57� is fulfilled, which gives

�w,n =
1

Sn

0

Rf

f�q�qn−1dq

, �59�

where Rf is the radius of the support of f and Sn is the
surface of the unit sphere in dimension n. We consider here
the following example of kernel, namely, the spline of order
5 given by

f5�q� = �
�3 − q�5 − 6�2 − q�5 + 15�1 − q�5 if 0 � q � 1

�3 − q�5 − 6�2 − q�5 if 1 � q � 2

�3 − q�5 if 2 � q � 3

0 if 3 � q ,
�

�60�

with support of radius Rf =3, while �59� gives

�w,2 =
7

478

,

�w,3 =
1

120

. �61�

Let us now come back to the SPH interpolation. Denoting
wab�wh�rab�, Eq. �55� reads

Aa � �
b

VbAbwab. �62�

As an example, the density ��a� of the particles are defined
by

�a =
ma

Va
�63�

and can be interpolated using Eq. �62� to give

�a � �
b

mbwab. �64�

The assumption regarding the kernel dependency on rab also
yield the following rule:

�wh�rab�
�ra

= ẇh�rab�eab, �65�

where

ẇh =
�w,n

hn+1 ḟ�q� �66�

is the first derivative of wh and eab is defined by Eq. �52�.
Introducing the notation ẇab� ẇh�rab�, we can write
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wab = wba,

ẇab = ẇba. �67�

Then, taking the gradient of Eq. �62� with respect to ra
and using Eq. �65� lead to a discrete approximation of the
gradient of A:

�grad A�a � �
b

VbAbẇabeab. �68�

Such considerations can be applied to any kind of tensor.
We will thus introduce discrete gradient �G� and divergence
�D� operators of scalar ��Ab�� and vector ��Ab�� fields at the
location of the particle a as

Ga�Ab� � �
b

VbAbẇabeab � �grad A�a,

Da�Ab� � �
b

VbAb · ẇabeab � �div A�a. �69�

Formulas �69� are not the only possible ones allowing
gradient and divergence discrete approximations. We may
first observe that for every real number k, the following exact
rules stand:

grad A = �k grad
A

�k +
A

�kgrad��k� ,

div A =
1

�kdiv��kA� −
A

�k · grad��k� . �70�

Writing the above two expressions at the location of the
particle a, and using G and D to approximate the continuous
operators, then using the definitions �Eq. �69��, we find a
family of discrete gradient �Gk� and divergence �Dk� opera-
tors,

Ga
k�Ab� � �

b

Vb

�b
2kAa + �a

2kAb

��a�b�k ẇabeab,

Da
k�Ab� � −

1

�a
2k�

b

Vb��a�b�kAab · ẇabeab �71�

�see e.g. Refs. �9,10��. Under the assumptions of isotropy
and normalization of the kernel �in particular, from the im-
portant consequence Eq. �58��, the various operators intro-
duced above are accurate up to order 2 regarding h �9�. They
have different properties, which make them more or less rel-
evant to model the equations of motion in a discrete form.
Let us remind the continuity and inviscid momentum equa-
tions for a compressible fluid:

d�

dt
= − � div u ,

du

dt
= −

1

�
grad p + g . �72�

Using the operators Gk and Dk �Eq. �71�� to approximate
grad p and div u, we immediately find the following discrete

form giving the evolution of particle densities along time:

∀a,
d�a

dt
=

1

�a
2k−1�

b

Vb��a�b�kuab · ẇabeab,

dua

dt
= − �

b

mb

�b
2kpa + �a

2kpb

��a�b�k+1 ẇabeab + g . �73�

Equation �73� can be used to compute the particle densi-
ties ��a� and velocities �ua�. The SPH equation of motion
thus takes the form of a discrete particle momentum equation
involving individual forces, just as in Sec. II. The choice of
Gk as a gradient operator shows the advantage that the pres-
sure �i.e., internal� forces are now written as

Fb→a
int = − mamb

�b
2kpa + �a

2kpb

��a�b�k+1 ẇabeab = − Fa→b
int . �74�

The last equality stems from the symmetry rules �Eqs.
�52� and �67��. Thus, the internal forces satisfy the conserva-
tion of total linear momentum of a closed set of particles, as
required by the theory. Moreover, forces �Eq. �74�� are col-
linear with eab and hence satisfy the conservation of total-
angular momentum �11�. As a matter of fact, the above dis-
crete conservation law suggests that the SPH equation of
motion �Eq. �73�� may be derived from an action principle,
which has been known for a long time for some particular
forms of this equation �Refs. �9,10��. This shows the rel-
evance of the choice made in Eq. �73� for the discrete form
of the divergence �Dk� and gradient �Gk� operators, respec-
tively. We may say that the discrete operators Gk and Dk are
compatible in a variational acceptation. Ref. �12� shows how
this compatibility stems from the nondissipative Hamiltonian
principles, as stated in Sec. II B.

B. SPH dissipative forces

We now come to SPH approximations of dissipative
forces, using the considerations developed in Sec. II B. We
first remind the general continuous form of the momentum
equation for viscous fluids. The extension of Euler’s momen-
tum Eq. �72� to friction forces, i.e., the Navier-Stokes mo-
mentum equation, can be written as

du

dt
= −

1

�
grad p +

1

�
div � + g , �75�

with

� = �sD + ��div u�I ,

div � = div��s� + grad
�� −
2

3
�	div u� ,

s =
1

2
�grad u + �grad u�T� , �76�

where � and � are the fluid viscosities, s the rate-of-strain
tensor and the superscript D denotes its deviatoric part �13�.
We must then extend our SPH considerations to discrete op-
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erators of order 2. It is known that using second-order de-
rivatives of the kernel leads to unphysical diffusion proper-
ties �1� and to numerical instabilities. It is therefore
recommended to find SPH interpolands of first order, through
the following scheme. We first give an idea of the typical
SPH form of such operators by focusing on the vector
�div�KA grad A��a, where KA is a scalar diffusion coefficient
relative to the vector field A. Using a vectorial form of the
operator Dk �Eq. �71�� to estimate grad A gives the following
approximation:

Da
k��KA grad A�b�

= �
b

Vb

�b
2kKA,a�grad A�a + �a

2kKA,b�grad A�b

��a�b�k · ẇabeab.

�77�

The gradients appearing in Eq. �77� could be estimated
with the operators Gk �12�, but this method would lead to
double discrete summations, resulting in a too demanding
numerical algorithm. We will then approximate the gradients
by Taylor-expanding Ab to the first order around ra,

Ab = Aa − �grad A�a · rab + O�rab
2 � �78�

�the “minus” sign stems from the definition rab=ra−rb�. We
thus obtain

�grad A�a · eab �
Aab

rab
. �79�

Swapping indices in Eq. �79� also gives

�grad A�b · eab = − �grad A�b · eba � −
Aba

rba
=

Aab

rab
. �80�

Introducing Eqs. �79� and �80� into Eq. �77� gives a new
family of “Laplacian” operators:

La
k��KA,b�,�Ab�� � �

b

Vb

�b
2kKA,a + �a

2kKA,b

��a�b�k

Aab

rab
ẇab

� �div�KA grad A��a. �81�

For k=0, we find

La
0��KA,b�,�Ab�� � 2�

b

Vb
K̄A,abAab

rab
ẇab, �82�

with, for any arbitrary field B,

B̄ab =
Ba + Bb

2
. �83�

However, this method can hardly be extended to arbitrary
second derivatives. Following Ref. �1�, we will use the fol-
lowing general discrete approximation of the ij component
of the tensor �grad�KA grad A��a:


 �

�xi
�KA

�A

�xj
	�

a

� �
b

Vb
K̄A,abAab

rab
��n + 2�eab,ieab,j − �ij�ẇab,

�84�

where eab,i is the i-th component of the vector eab �n is still
the dimension of the problem�. This form was first suggested
by �2� for a similar Lagrangian numerical method �smoothed
dissipative particle dynamics� in the case n=3 and constant
KA, and extended to the cases n=2 and n=3 for SPH and
arbitrary KA in Ref. �1�. However, the latter paper does not
provide any accurate proof of this result for nonconstant dif-
fusion coefficients. We give an accurate demonstration of Eq.
�84� for arbitrary dimensions and diffusion coefficients in the
Appendix of the present paper. Note that the case of a non-
constant viscosity is important for modeling multiphase
flows; it can also be required when considering turbulent
flows modeled through Boussinesq’s eddy viscosity assump-
tion as a closure for the Reynolds stress tensor �see e.g., Ref.
�14� or Ref. �15�. for its application to SPH�.

All second order operators can be deduced by applying
Eq. �84� to an arbitrary component Al of a vector, and by
multiplying the result by the unit vector corresponding to the
mth axis,


 �

�xi
�KA

�Al

�xj
	�

a

em � �
b

Vb
K̄A,abAab,l

rab
��n + 2�eab,ieab,j

− �ij�ẇabem. �85�

Contracting indices l=m and i= j gives

�div�KA grad A��a � 2�
b

Vb
K̄A,abAab

rab
ẇab, �86�

which is identical to Eq. �82�. Next, coming back to Eq. �85�
and setting l= i and m= j yields

�div�KA�grad A�T��a � �
b

Vb
K̄A,ab

rab
��n + 2��Aab · eab�eab

− Aab�ẇab. �87�

Then, setting l= j and m= i in Eq. �85� leads to

�grad�KA div A��a � �
b

Vb
K̄A,ab

rab
��n + 2��Aab · eab�eab

− Aab�ẇab �88�

�note that the discrete forms Eqs. �87� and �88� are identical,
although the corresponding continuous operators are equal
only if KA is a constant�. The last three approximations allow
to write an SPH form of shear forces �Eq. �76�� as

�div ��a � �
b

Vb

rab

�n + 2�� �̄ab

3
+ �̄ab	�uab · eab�eab

+ �5�̄ab

3
− �̄ab	uab�ẇab. �89�
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For n=2 and constant viscosities, the latter equation gives
the viscous force proposed in Ref. �2�. The case of an incom-
pressible flow �div u=0, or �= 2

3� according to Eq. �76��
simplifies it to

�div ��a � �
b

Vb
�̄ab

rab
��n + 2��uab · eab�eab + uab�ẇab.

�90�

If in addition to the incompressibility assumption, we
state that the viscosity � is constant in space, we observe that

div��grad u�T� = grad div u = 0 . �91�

Thus, according to Eq. �86� we get

�div ��a = ��div�grad u��a � 2��
b

Vb
uab

rab
ẇab. �92�

This form of SPH viscous forces was proposed first in
Ref. �16� with a nonconstant viscosity, similarly to Eq. �82�.
Finally, under the same assumptions we may invoke Eq. �91�
to write

�div ��a = ��div�grad u + 2�grad u�T��a

� 2�n + 2���
b

Vb
uab · eab

rab
ẇabeab, �93�

which agrees with the standard SPH artificial viscous forces
proposed in ref �10�, as well as the molecular of turbulent
viscous forces suggested on identical backgrounds in Ref.
�15�, although both papers incorrectly assumed this model to
be valid for variable viscosities. We thus got four formulae
�Eqs. �89�, �90�, �92�, and �93� to estimate shear forces, the
last three being applicable to incompressible flows and the
last two to constant viscosities only. Referring to Sec. II B,
we notice that all of them consist of individual friction forces
Fb→a

diss between pairs of particles, according to the general
form �Eq. �27� and �31��. Equation �89� corresponds to fric-
tion matrices defined by

�ab = −
VaVb

rab
ẇab
�n + 2�� �̄ab

3
+ �̄ab	eab � eab

+ �5�̄ab

3
− �̄ab	In� , �94�

while Eq. �90� gives

�ab = − VaVb
�̄ab

rab
ẇab��n + 2�eab � eab + In� . �95�

Equation �92� gives

�ab = − 2�
VaVb

rab
ẇabIn �96�

and Eq. �93� yields

�ab = − 2�n + 2��
VaVb

rab
ẇabeab � eab �97�

�note that, with a constant �, Eq. �95� is the average of Eqs.
�96� and �97��. In formulae �94�–�97� the dependency of the
�ab’s on particle distance rab stands through the quantities
ẇab= ẇh�rab�. The symmetry condition �Eq. �29�� of the ma-
trices �ab �i.e., the action-reaction law, Eq. �35�� is satisfied
by these four models, but not the definite positiveness. In-
deed, the general form �Eq. �94�� yields the following dissi-
pation function from �Eq. �33��, after some algebra,

F = −
1

2�
a,b

VaVb

rab
� �̄ab

3
��n + 2��eab · uab�2 + 5uab

2 �

+ �̄ab��n + 2��eab · uab�2 − uab
2 ��ẇab, �98�

which sign is not fixed, due to the factor −uab
2 . In contrast,

note that the original Navier-Stokes Eq. �75� gives the energy
loss by dissipation �for a closed fluid, ideally without contact
forces at its boundary� as

dH

dt
= − 


�

�:sd� = − 

�

��sD:sD + ��div u�2�d� .

�99�

Equation �99� gives the energy dissipation from a positive
form �provided � and � are positive, see Ref. �13��, which
can be seen as an extension of Eq. �41� to continuous fluids.
Equation �98� is, thus, a discrete approximation of �99�, and
its nonpositiveness points out a weakness of the proposed
model �Eq. �84�� for the SPH second-order derivatives. How-
ever, for incompressible flows, the specific forms Eq. �95�
and �97�, respectively, read

F = −
1

2�
a,b

VaVb
�̄ab

rab
��n + 2��eab · uab�2 + uab

2 �ẇab

�100�

for Eq. �95�; then

F = − ��
a,b

VaVb

rab
uab

2 ẇab �101�

for Eq. �96�, and finally

F = − �n + 2���
a,b

VaVb

rab
�eab · uab�2ẇab �102�

for Eq. �97�. Their positiveness is ensured provided ẇab�0
for b�a, i.e., if the following condition is satisfied:

r 
 0:ẇh�r� � 0. �103�

Thus the kernel derivative must be negative for all non-
zero particle distances, a condition satisfied by the kernel
�Eq. �60�� introduced above �the behavior of ẇh�r� in the
vicinity of the origin will be stated below�. On similar �ther-
modynamical� ideas, it has been noticed in Ref. �1� that this
condition is necessary to model scalar �e.g., temperature�
fluxes consistent with their gradients. The definite positive-
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ness of energy dissipation through dissipative matrices Eq.
�95� to Eq. �97� are then ensured; however, they possess
different properties in view of the considerations made in
Sec. II B. The proposition �Eq. �92�� presents the advantage
to give shear forces collinear to the velocity difference uab,
in accordance to what the theory of continuous incompress-
ible fluids suggests with �=�s. Nevertheless, our consider-
ations regarding discrete dissipative forces show that the
forces given by this model do not conserve angular momen-
tum nor vanish for a rigid body motion. The latter two con-
ditions require �ab=	abrab � rab �Eq. �47��, which is only
satisfied by Eq. �97� �i.e., Eq. �93�� with

	ab = − 2�n + 2��
VaVb

rab
3 ẇab 
 0, �104�

which thus seems to be the best of the three proposed for-
mulae, but again, only experimental tests will drive us to
firm conclusions about that point. In this case, the dissipation
function �Eq. �102�� can be recovered from Eq. �49�. More-
over, Eq. �50� tells us that 	ab�rab�rab

2 must tend to a positive,
nonzero quantity ga when rab tends to zero. With Eq. �104�,
we can conclude that ẇh�r� must be equivalent to r when r
tends to zero, in other words, using the dimensionless kernel
Eq. �56�, one must have

ḟ�q� �
q→0

− Cwq , �105�

where Cw is a positive, nonzero constant depending on the
kernel. As a consequence, at the origin �r=0� the kernel first
derivative must be null and its second derivative nonzero,
negative:

ḟ�0� = 0,

f̈�0� � 0. �106�

The kernel Eq. �60� satisfies these conditions with Cw=120.
Dimensionally speaking, with Eq. �66�, Eq. �105� reads

ẇ�r� �
r→0

−
Cw�w,n

hn+2 r . �107�

A kernel which would not satisfy the conditions Eq. �106�
would yield a wrong estimation of volumes in the phase
space, and thus an incorrect behavior of the particle motion,
as we will see later.

As an example, with model Eq. �93� for discrete viscous
forces, the momentum Eq. �73� now takes the form

∀a,
dua

dt
=

1

�a
�

b

Vb
−
�b

2kpa + �a
2kpb

��a�b�k

+ 2�n + 2��
uab · eab

rab
�ẇabeab + g . �108�

As stated in Sec. II B, the �macroscopic� kinetic energy
lost by the particles through the viscous forces is converted
into heat. Modeling temperature raise in SPH does not

present any additional difficulty, ensuring the exact conser-
vation of total energy. A good review of these considerations
is presented in Ref. �17�.

Compared to more traditional approaches for modelling
SPH viscous forces �see Refs. �10,16��, the present model
does not increase computational time.

C. Application to a viscous steady flow

To illustrate the ability of the presented SPH interpolants
to predict velocity fields, we now apply the model to a par-
ticular viscous flow. In order to compute the pressure, a state
equation is used �18�, based on a numerical speed of sound
c0 and a reference density �0 �so that the flow keeps almost
incompressible�. The particles are initially placed on a regu-
lar Cartesian grid with initial particle spacing �r. We first use
the kernel Eq. �60� with a smoothing length equal to 1.5
times the initial particle spacing. Wall conditions are speci-
fied through wall particles and fictitious particles, following
the method, e.g., presented in Ref. �15�. These boundary par-
ticles are identical to fluid particles, i.e., they have the same
mass and reference density, and are placed on a Cartesian
grid, equally spaced with spacing �r. They prevent the fluid
particles from crossing the walls, and thus ensure a total
impermeability.

We successfully tested the present model on various con-
figurations, including complex, rapidly moving free-surface
flows. However, in order to present a clear quantitative vali-
dation in terms of velocity distribution, we focus here on a
steady confined flow for which a comparison with a mesh-
based method will be possible. We consider the test case of
the two-dimensional �2D� periodic steady laminar hill flow
�19� based on the geometry presented on Fig. 1 �the detailed
geometry is available in Ref. �20��. The distances are H
=84.98 mm, L=252 mm, l=54 mm, hH=28 mm, and hI
=56.98 mm. About 20 000 water particles are driven by a
horizontal propelling force with a constant mean velocity
U=1.785�10−3 m /s. The Reynolds number, based on the
hill height hH and the mean velocity U, is equal to 50, and
there is no free surface, the upper boundary being a solid
wall �hence, gravity is not considered here�. We set �r
=10−3 m and c0=0.06 m /s. Consistently with the literature
on weakly compressible SPH �16�, the time step is deter-
mined by three conditions,

�t = min�0.4
h

c0
;0.25� h

Fmax
;0.125

h2

�
	 , �109�

where h is the smoothing length, �=10−6 m2 s−1 the water
molecular viscosity and Fmax is the maximum force experi-

FIG. 1. Geometry of the periodic hill flow.
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enced by a particle. In the present case, the Courant-
Friedrich-Levy condition based on the speed of sound domi-
nates and gives a constant time step �t=10−2 s.

The results consist here of four vertical velocity profiles at
x /h=0.5, 3.0, 5.0 and 8.0, respectively; they will be com-
pared with the simulations presented in Ref. �20�, made with
the finite volume Eulerian method. Figure 2 shows that SPH
presents a very good agreement to finite volumes. It may be
emphasized that the Lagrangian nature of SPH yields small
fluctuations that have been removed here using time averag-
ing.

The three viscous models Eqs. �90�, �92�, and �93� were
tested together with model Eq. �73� for density estimation
and conservative forces with the choice k=1 �other choices
give identical results�. It appears that, due to the incompress-
ibility of the flow and the constantness of the viscosity �,
they all give identical velocity profiles �see Fig. 2, where
only model Eq. �93� were plotted since the three viscous
models give almost superimposed curves�. Hence, despite
the fact that the first two models do not conserve angular
momentum, the velocity distributions are not affected here.
So far, we used in all our computations the kernel Eq. �60�,
which satisfies the conditions Eq. �106�. In a second step, we
tested two kernels violating those rules. First, we considered
the following kernel:

f�q� = −
1

2
q2 + 2q − 2,

ḟ�q� = − q + 2, �110�

having a nonzero first derivative at the origin. Its radius is
Rf =2, while Eq. �59� gives

�w,2 =
3

28

�111�

in two dimensions. Figure 3 shows that the velocity profiles,
even time averaged, are very scattered and underestimated.
The kernel used here does not fulfill the rule Eq. �50�, so that

Eq. �54� shows that it preserves the volumes Ṽ in the phase
space instead of reducing them, which is the reason of the
observed instability. In other words, the kernel does not al-
low energy to be dissipated up to the exact amount; the re-
sulting scattered velocities induce artificial energy dissipa-
tion to remove the remaining energy. Next, we considered
the following kernel:

f�q� =
1

4
q4 −

4

3
q3 +

3

2
q2 +

9

4
,

ḟ�q� = q�q − 1��q − 3� , �112�

which has a zero first-order derivative at the origin, but a
positive second-order derivative for small q’s. Its radius is
Rf =3, while Eq. �59� gives, in two dimensions:
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FIG. 2. Velocity profiles. Solid lines: Finite Volumes; dashed lines: SPH using Eq. �73� with k=1 �all choices for k give identical results�
and model Eq. �93� for the dissipation, with the “standard’ kernel” Eq. �60�.
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�w,2 =
20

243

. �113�

This kernel gives better results than Eq. �110� in our test
case when looking at time-averaged velocities �not plotted
here�, but Fig. 4 reveals that the instantaneous velocity pro-
files are again scattered, while with the kernel given by Eq.
�60� they keep rather smooth and stable while time runs.

To finish, note that from Eq. �104�, one can find the quan-
tities ga introduced at the end of Sec. II B,

ga = lim
rab→0

�	abrab
2 � =

2�n + 2�Cw�w,n

hn+2 �Va
2. �114�

Thus, according to Eq. �54�, the relative decrease in phase
space volumes is given by

1

Ṽ

dṼ

dt
= −

2�n + 2�Cw�w,n

hn+2 ��
a

Va

�a
. �115�

As expected, it is proportional to the fluid viscosity. One
should not be surprised of the fact that Eq. �115� depends on
the smoothing length h �i.e. on the spatial discretization� and
on the choice of the kernel �through Cw and �w,n�. The con-
siderations at the end of Sec. II B show that the process of
volume decrease in the phase space is strongly dependent on
the scale at which the system is observed. As a matter of fact,

dimensional considerations show that there cannot exist any
formula giving the phase volume decrease in the continuous
formalism of fluids, such as Eq. �99� for the energy dissipa-
tion.

IV. CONCLUSIONS

We have seen that Hamiltonian considerations can be ex-
tended to dissipative forces applied to a discrete system of
particles, with consequences regarding the form of the dis-
crete friction forces in order to satisfy the conservation prop-
erties as well as the volume shrinkage in the macroscopic
phase space. Furthermore, we have given a solid demonstra-
tion of the general forms of second-order derivatives in SPH.
Among those forms, our investigations on discrete particle
dissipative forces reveal that only a limited number are con-
sistent with the laws of Mechanics, in particular with the
conservation of angular momentum. As for volume shrink-
age and energy dissipation, a major requirement is that at the
origin, the kernel wh�r� must have a first-order derivative
which vanishes at the origin while its second-order deriva-
tive must be nonzero, negative in order to ensure stability.
These constraints were found to be closely linked to the the-
oretical behavior of a dissipative mechanical system in the
phase space. In the past, other conditions have been found to
be necessary to keep SPH simulations stable in various ac-
ceptations: for example, it is known that the second-order
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FIG. 3. Velocity profiles. Solid lines: Finite Volumes; dotted lines: SPH using the kernel Eq. �60�; dashed lines: SPH using the kernel Eq.
�110�.
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derivative of the kernel must be nonzero, positive for all
nonzero rab’s in order to avoid particle clustering �21�. The
latter condition, together with our conditions, is obviously
not easily satisfied. These considerations should be carefully
considered by SPH developers, who often use arbitrary ker-
nels. Besides, similar considerations could be extended, mu-
tatis mutandis, to other particle methods such as DPD and
MPS.
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APPENDIX

We give here a demonstration of formula �84�,


 �

�xi
�KA

�A

�xj
	�

a

� �
b

Vb
K̄A,abAab

rab
��n + 2�eab,ieab,j − �ij�ẇab,

�A1�

which can be rewritten in a tensorial form as

Ga � �
b

Vb
K̄A,abAab

rab

�n + 2�

rab � rab

rab
2 − In�ẇh�rab�

�A2�

where G is the following second order tensor:

G = grad�KA�grad A�� =
�

�xi
�KA

�A

�xj
	ei � e j �A3�

�in which the ei’s are the unit vectors of a Cartesian basis�.
We first write an integral approximation of Eq. �A2�, accord-
ing to the SPH interpolation �Eq. �55��,

J = 

�

�K̄A,abAab��r�
r


�n + 2�
r � r

r2 − In�ẇh�r�dnr

�A4�

Next, we use a Taylor expansion of KAA in the vicinity of the
particle a, similarly to Eq. �78� but up to the second order,

KA,bAb = KA,aAa − KA,a�grad A�a · rab − Aa�grad KA�a · rab

+
1

2
Ga:�rab � rab� +

1

2
��grad KA�a · rab�

���grad A�a · rab� + O�rab
3 � , �A5�

where the double contraction of two tensors A and B of
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FIG. 4. Velocity profiles �here not time averaged�. Solid lines: Finite Volumes; dotted lines: SPH using the kernel Eq. �60�; dashed lines:
SPH using the kernel Eq. �112�.
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respective orders p and q is defined by A :B
=Ai1i2. . .ip−1ip

Bipip−1i3. . .iq−1iq
, with Einstein’s summation con-

vention regarding the dummy indices ip−1 and ip. We then
use first order developments of KA and A analogous to Eq.
�79�:

�grad A�a · rab = Aab + O�rab
2 �

�grad KA�a · rab = KA,ab + O�rab
2 � . �A6�

Combining Eqs. �A5� and �A6� gives

K̄A,abAab � �KA grad A�a · rab −
1

2
Ga:�rab � rab� + O�rab

3 � .

�A7�

On this basis, the integral Eq. �A4� can be developed as

J = 
J1�KA grad A�a +
1

2
J2:Ga + J3� . �A8�

The integrals J1, J2, and J3 are tensors of respective orders 3,
4, and 2, defined by

J1 = 

�

1

r2
�n + 2�
1

r
�r � r � r� − In � r�ẇh�r�dnr ,

J2 = − 

�

1

r2
�n + 2�
1

r
�r � r � r � r�

− In � r � r�ẇh�r�dnr ,

J3 = 

�

1

r2O�r3�
�n + 2�
1

r
r � r − In�ẇh�r�dnr . �A9�

The property �Eq. �58�� shows that J1 and J3 are null; thus,
Eq. �A8� gives

J =
1

2
J2:Ga + O�h4� . �A10�

To calculate J2, we write the volume of integration in dimen-
sion n as dnr=rn−1drd�, where d� is the infinitesimal angle
of dimension n, which allows separating the variables:

J2 = − 

0

ht

ẇh�r�rndr��n + 2�

�n

e � e � e � ed�

− In � 

�n

e � ed�	 , �A11�

where e is the local unit vector r /r, running over the
n-sphere �n of radius unity and surface Sn. The first integral
in Eq. �A11� is easily calculated from the kernel normaliza-
tion condition �59�,



0

ht

ẇh�r�rndr = �wh�r�rn�0
ht − n


0

ht

wh�r�rn−1dr

= − n�w,n

0

Rf

f�q�qn−1dq = −
n

Sn
.

�A12�

The last two integrals in Eq. �A11� can be calculated from
symmetry conditions. We begin with the second one: the
components of the second-order tensor e � e are eiej, where
ei=xi /r denotes the i-th component of the unit vector e �not
to be confused with the i-th unit vector of the basis ei, written
in bold�. Obviously, changing ei into −ei keeps the integral
unchanged, since the sphere is invariant through plane reflec-
tions. Thus, the only integrals of eiej, which do not vanish
are those with i= j. Besides, they are all equal to each other
for reasons of isotropy, while their sum is the integral of
eiei=1. From this it immediately follows that



�n

e � ed� =
Sn

n
In �A13�

For the integral of e � e � e � e in Eq. �A11�, similar consid-
erations show that the only nonzero components are of the
form ei

4 or ei
2ej

2 with i� j. Observing that a rotation of angle

 /4 around the origin in the �i , j�-plane keeps the sphere
unchanged, we get



�n

ei
4d� = 


�n

� ei + ej

�2
	4

d� . �A14�

Developing the last integral and using symmetry and isot-
ropy, we obtain



�n

ei
4d� = 3


�n

ei
2ej

2d� . �A15�

On the other hand, we may also write



�n
��

i

ei
2	2

d� = 

�n
��

i

ei
4 + �

i�j

ei
2ej

2	d� �A16�

which gives

Sn = n

�n

ei
4d� + n�n − 1�


�n

ei
2ej

2d� . �A17�

Combining with Eq. �A15� yields



�n

ei
4d� =

3Sn

n�n + 2�
. �A18�

The surface of the unit sphere being Sn=2
n/2 /�� n
2 � �22�, for

n=2 one obtains

Sn = 2
 ,



�2

ei
4d� =

3


4
,

D. VIOLEAU PHYSICAL REVIEW E 80, 036705 �2009�

036705-14





�2

ei
2ej

2d� =



4
�A19�

as found in Ref. �1�. For n=3,

Sn = 4
 ,



�3

ei
4d� =

4


5
,



�3

ei
2ej

2d� =
4


15
�A20�

consistently with Refs. �1,2�. The above results can be used
to rewrite the expected integral in the very simple form



�n

e � e � e � ed� =
Sn

n�n + 2�
��ij�kl + �ik� jl + �il� jk�ei � e j

� ek � el �A21�

�the terms involving the integral of ei
4 are implicitly included

into the other terms�. Finally, Eqs. �A11�, �A13�, and �A21�
lead to

J2 = ��ik� jl + �il� jk�ei � e j � ek � el. �A22�

Coming back to �A10�, we now get the expected result:

1

2
J2:Ga =

1

2
��ik� jl + �il� jk�
 �

�xm
�KA

�A

�xn
	�

a

ei � e j

= 
 �

�xi
�KA

�A

�xj
	�

a

ei � e j = �grad�KA grad A��a.

�A23�
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